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Abstract. This paper is the third in a sequence of papers developing and applying the finite-
lattice method for estimation of the zero-temperature properties of quantum spin models on
infinite cubic lattices. Here we generate finite bipartite body-centred cubic (bcc) lattices of
16 6 N 6 32 vertices. Our geometrically distinct finite lattices are defined by vectors in
upper triangular lattice form. We have found that sets of two to six geometrically distinct finite
bcc lattices are topologically identical, and that we thus need only one lattice of each set for
our method of estimation. We have studied the spin one-half Heisenberg antiferromagnet by
diagonalizing its Hamiltonian on each of the finite lattices and hence computing its ground-state
properties. By extrapolation of these data we obtain estimates of theT = 0 properties on
the infinite bcc lattice. Our estimate of theT = 0 energy agrees to five parts in 10 thousand
with third-order spin-wave and series-expansion method estimates, while our estimate of the
staggered magnetization agrees with the spin-wave estimate to within 0.25%.

1. Introduction

The physics of quantum spin systems on lattices has been much studied and remains of great
interest. It is a major part of condensed matter physics. In particular at zero temperature
questions such as what the energy per vertex is, whether long-range order exists, if so what
is its nature, the possibility of quantum phase transitions, the spatial dependence of spin–spin
correlations, etc are being studied. Several different methods of calculating the properties
of quantum spin systems such as the Heisenberg antiferromagnet, theXY ferromagnet and
the t–J model are being developed and used. The usefulness of a method of calculation of
properties depends greatly on the dimension,d, of the lattice and the temperature,T .

At T = 0 and ford = 2 or 3 series expansions starting from the Ising model limit and
spin-wave methods have proved to be particularly useful [1]. The quantum Monte Carlo
method would be very useful too, but we are unaware of its application to quantum spin
models on cubic lattices.

In 1964 Bonner and Fisher [2] introduced what we could now call the method of exact
diagonalization on finite lattices in one dimension. Two decades ago Oitmaa and Betts
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introduced the finite-lattice method in two dimensions [3, 4]. It became popular after high
Tc superconductivity was discovered. For further information recent review articles are
recommended [5, 6]. However, it seems that until recently (except for one short exploratory
paper [7]) no one extended the method of exact diagonalization on finite lattices to three
dimensions.

In 1997 Betts and Stewart published their paper on the estimation of zero-temperature
properties of quantum spin systems on the simple cubic lattice via exact diagonalization on
finite simple cubic lattices [8]. This method was soon extended to finite face centred cubic
(fcc) lattices for the estimation of theT = 0 properties of the spin one-halfXY ferromagnet
on the infinite fcc lattice using finite fcc lattices ofN 6 25 vertices [9]. The finite-lattice
method estimates of the energy and magnetization per vertex of this model agreed to within
a fraction of a percent with the estimates by spin-wave, series-expansion and variational
methods.

We learned from Lynesset al [10] about using a triple of vectors in upper triangular
lattice form (utlf) to define finite lattices in three dimensions. Generating finite lattices in
this way ensures that each lattice is geometrically distinct. Some of us used the utlf method
first to define finite lattices [9]. Since then we have learned that some lattices that are
geometrically distinct are topologically identical. Hence, as far as we have investigated,
each physical property of each quantum spin model with nearest neighbour interactions
has the same numerical value on all topologically identical though geometrically distinct
lattices.

In section 3 we describe how to classify finite-lattices topologically. First we define
a topological neighbourhood matrix and calculate one for each finite bcc lattice. Any
two geometrically distinct finite lattices whose neighbourhood matrices are equivalent are
topologically identical lattices. We find such equivalence in two separate ways. Our
topological sorting code is very easy to calculate but is useful only for bipartite finite
lattices ofN < 32. The little known Smith normal form matrix can work for large as well
as small lattices but is more complicated to calculate.

Section 4 describes the computation of the ground-state eigenvalue and eigenvector of
the spin one-half Heisenberg Hamiltonian on the finite bcc lattices. Ground-state spin–
spin correlations are computed for each lattice using its eigenvector. Thence the staggered
magnetization is calculated. Statistical analyses fit formulae, determined by spin-wave
theory [1], inN−1/3 to the data in turn for energy, magnetization and correlations and thus
provide finite-lattice method estimates for theT = 0 properties on the infinite bcc lattice.
Since our method includes the precise calculation of the ground-state of the eigenvector, it
has the advantage of the ready calculation of any property of the quantum spin model based
on its ground-state eigenvector.

Finally we compare our finite results with the recent series expansion, third-order spin-
wave [1] and variational [11] estimates. Our estimate of the energy per vertex agrees with
the spin-wave and series-expansion estimates very closely. Our estimate of the staggered
magnetization agrees to within 0.25% with the estimates from both of the above-mentioned
methods. The variational estimate of energy is 1% below the other three estimates, and the
variational estimate of staggered magnetization is 3% below the other estimates.

2. Generation of bipartite finite bcc lattices

The unbounded bcc lattice can be defined by any three of the primitive vectorsa1 = (1, 1, 1),
a2 = (1, 1,−1), a3 = (1,−1, 1) anda4 = (−1, 1, 1). The unbounded bcc lattice can be
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filled by identical parallelepipeds each defined by three edge vectors,

lα =
3∑

β=1

nαβaβ (2.1)

wherenαβ are integers.
A finite bcc lattice can be derived from any one of the parallelepipeds described above

by being subjected to periodic boundary conditions. That is, each of the three pairs of
opposite faces are identified.

A finite bcc lattice is bipartite if each of the nine coefficients,nαβ , is an even integer.
The resulting bipartite finite bcc lattice consists of two identical finite simple cubic lattices.
Any of several different parallelepipeds can generate the same finite lattice. Another way
of regarding a finite lattice is to consider an unbounded lattice, bcc, fcc or whatever, as
being composed ofN identical sublattices. Then on each of theN sublattices all vertices
are considered to be one vertex.

In figure 1 we provide an example of a bipartite finite bcc lattice. The parallelepiped
which by replication fills the unbounded bcc lattice is defined by edge vectors

L1 = (0,−2, 4) L2 = (2, 4, 0) L3 = (−2, 4, 2). (2.2)

The volume of this parallelepiped is 72, which means that it containsN = 18 vertices. The
vertices on one simple cubic sublattice are represented by black circles and those on the
other sublattice by white squares. Of course, each of the eight corner vertices is shared
by eight parallelepipeds, and each of the two face-centred ‘white vertices’,(−1, 1, 3) and
(1, 5, 3), is shared between two parallelepipeds.

An N = 18 bipartite finite bcc lattice is formed by the application of periodic boundary
conditions in all three directions, that is, by identifying each pair of opposite faces of
the parallelepiped. The resulting nine distinct vertices on one sublattice are labelled
A,B,C, . . . I and the nine vertices on the other sublattice are labelleda, b, c, . . . i. We
have drawn bonds only between vertex(0, 4, 2) and its eight nearest neighbours. (Drawing
all the bonds would make figure 1 appear too cluttered.) Note that two of these bonds each
have two pieces within the parallelepiped, but because of periodic boundary conditions each
of these bonds is continuous in the finite lattice.

Since publishing the first paper on exact diagonalization on finite cubic lattices [8] we
learned about describing the generating of finite lattices by parallelepipeds in utlf. Ann×n
matrix,B, is in upper triangular lattice form [10] if and only if the integral matrix elements,
bij , satisfy the following criteria:

bij > 1 i = 1, 2, . . . , n

bij = 0 16 j < i 6 n
bij ∈ [0, bij ) 16 i < j 6 n.

(2.3)

For utlf parallelepipeds on the bcc lattice the first edge vector,l1, is in the positive octant
of the lattice space but not in thetz-plane; the second edge vector,l2, lies in the positive
quadrant of theyz-plane but not along thez-axis; the third edge vector,l3, lies on the
positive z-axis. These three edge vectors form a 3× 3 utlf matrix, B. By using only
generating, or defining, vectors in utlf form each finite lattice is described only once, so we
have no need to search for duplicates. Further discussion on utlf matrices is contained in
Stewartet al [9] and Lynesset al [10].

Here we describe our best criteria for the initial selection of finite bipartite bcc lattices.
First, each vertex must have eight distinct nearest neighbours for a model such as the usual
Heisenberg antiferromagnet. Thus all finite bipartite bcc lattices must have at least 16
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Figure 1. A sample 18 vertex, bcc lattice-filling parallelepiped is defined in this figure by the
eight corner vertices and the broken lines between them representing the edges. Application of
periodic boundary conditions to this parallelepiped forms the bipartiteN = 18 bcc lattice. The
nine vertices on one sublattice, labelled by capital letters, are represented by full circles, and the
vertices on the other sublattice, labelled by lower case letters, are represented by white squares.
The full lines connect vertexH to its eight nearest neighbours.

vertices. At the other limit one need not generate bcc lattices of more vertices than the
computer can deal with in a reasonable length of time; in our present caseN < 33. A
useful lattice ofN < 31 should have no pair of vertices farther apart than geometrically
seventh neighbours or equivalently topologically third neighbours (as described below). For
31 < N < 41 lattices topologically fourth neighbours should be included. Such criteria
for the bcc and other lattices topologically fourth neighbours should be included. Such
criteria for the bcc and other lattices can be applied in a simple computer program. With
the computing facilities available to us, we could complete the exact diagonalization of
the antiferromagneticS = 1

2 Heisenberg Hamiltonian on finite bcc lattices of more than
32 vertices, but it would have taken much more time. However, we are pleased to have
computed the ground-state eigenvector of 16 topologically distinct bcc lattices of 32 vertices.

Table 1 gives, for 166 N 6 32, the number of finite bcc lattices that are geometrically
distinct, the number of the geometrically distinct lattices that are bipartite, the number of
those that are also topologically distinct and finally, the number of those remaining which
are also statistically useful in our method.

All topologically distinct bipartite bcc lattices of 166 N 6 32 vertices are described
in table 2 below. Each lattice is described by a labelNα. The ‘best’ lattice for eachN
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Table 1. Numbers of finite bcc lattices of evenN vertices in which each lattice has eight distinct
nearest-neighbour vertices. The number headings are:ng—geometrically distinct lattices;nb—
bipartite lattices;nt—topologically distinct bipartite lattices;nu—statistically useful lattices.

N ng nb nt nu

16 12 5 1 1
18 15 1 1 1
20 22 4 2 2
22 16 1 1 1
24 52 15 6 5
26 21 2 2 2
28 44 9 6 4
30 52 7 7 5
32 57 20 16 10

Totals 291 64 42 31

is labelledA, the second bestB, etc. The statistical analysis of the energy data for the
Heisenberg antiferromagnet described in section 4 determines the order of goodness of the
finite lattices. The finite lattices are defined by a set of three vectors,li , in upper triangular
lattice form. One can consider the three vectors as defining the edge of a parallelepiped,
and then that the three pairs of opposite faces are identified, thus defining the finite lattice.
The same finite lattice can then be defined by a different ‘compact’ parallelepiped whose
compact edge vectors,Lj , are as short as possible:

Lj =
3∑
i=1

mjlli (2.4)

with each coefficient,mji , being an integer, positive, negative, or zero. The converse linear
relation also requires integral coefficients.

3. Topologically distinct finite lattices

After publication of the first article on using finite three-dimensional (simple cubic) lattices
to estimate the zero-temperature properties of quantum spin systems [8] we became puzzled
over the computed properties of some of the finite lattices. An examination of table 1 in
that publication shows that three apparently geometrically distinctN = 16 bipartite simple
cubic lattices have the same computed ground-state energy and the same long-range order
for the Heisenberg antiferromagnet and for theXY ferromagnet. This phenomenon also
occurs for a pair ofN = 18 bipartite simple cubic lattices and a triple ofN = 20 bipartite
simple cubic lattices.

In our second paper [9], developing the finite-lattice method on the fcc lattice for theXY

ferromagnet, no such phenomenon was found. However, there are no bipartite fcc lattices.
When we turned to the Heisenberg antiferromagnet on the bcc lattice the same phenomenon
was manifest. We wondered whether such geometrically distinct finite lattices, simple cubic
or bcc, could be topologically identical.

Our first step in determining whether two geometrically distinct finite lattices ofN

vertices are also topologically distinct is to construct atopological neighbourhood matrix
for each finite lattice. We label the verticesa, b, c, . . . on one sublattice andA,B,C, . . .
on the other. Suppose an imaginary microscopic frog can hop from one vertex to only one
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Table 2. Defining vectors of topologically distinct bipartite bcc lattices of 166 N 6 32 vertices.

utlf vectors Compact vectors

Nα l1 l2 l3 L1 L2 L3

16A (4, 0, 0) (0, 4, 0) (0, 0, 4) (4, 0, 0) (0, 4, 0) (0, 0, 4)

18A (2, 0, 8) (0, 2, 4) (0, 0, 18) (2,−2, 4) (0, 2, 4) (4, 0,−2)

20A (2, 0, 10) (0, 2, 6) (0, 0, 20) (2,−2, 4) (−2, 4, 2) (4, 0, 0)
20B (2, 0, 8) (0, 2, 4) (0, 0, 20) (2,−2, 4) (0, 2, 4) (4, 0,−4)

22A (2, 0, 8) (0, 2, 4) (0, 0, 22) (2,−2, 4) (0, 2, 4) (4, 2,−2)

24A (2, 0, 8) (0, 2, 4) (0, 0, 24) (2,−2, 4) (0, 2, 4) (4, 4, 0)
24B (2, 0, 4) (0, 4, 4) (0, 0, 12) (2, 0, 4) (0, 4, 4) (4, 4, 0)
24C (2, 0, 10) (0, 2, 6) (0, 0, 24) (2,−2, 4) (−2, 4, 2) (4, 2,−2)
24D (2, 0, 4) (0, 4, 6) (0, 0, 12) (2, 0, 4) (−2, 4, 2) (2, 4,−2)
24E (2, 0, 12) (0, 2, 4) (0, 0, 24) (2,−4, 4) (0, 2, 4) (4, 0, 0)
24F∗ (2, 0, 12) (0, 2, 6) (0, 0, 24) (4, 0, 0) (2,−4, 0) (2, 2,−6)

26A (2, 0, 10) (0, 2, 4) (0, 0, 26) (2,−4, 2) (0, 2, 4) (4, 2,−2)
26B (2, 0, 8) (0, 2, 4) (0, 0, 26) (2,−2, 4) (0, 2, 4) (4, 4,−2)

28A (2, 0, 12) (0, 2, 8) (0, 0, 28) (2,−2, 4) (−2, 4, 4) (2, 4, 0)
28B (2, 0, 12) (0, 2, 4) (0, 0, 28) (2,−4, 4) (0, 2, 4) (4, 2, 0)
28C (2, 0, 10) (0, 2, 4) (0, 0, 28) (2,−4, 2) (0, 2, 4) (4, 4, 0)
28D (2, 0, 10) (0, 2, 6) (0, 0, 28) (2,−2, 4) (−2, 4, 2) (4, 2,−2)
28E∗ (2, 0, 8) (0, 2, 4) (0, 0, 28) (−2, 4, 0) (0, 2, 4) (4, 4,−4)
28F ∗ (2, 0, 14) (0, 2, 4) (0, 0, 28) (4, 0, 0) (0, 2, 4) (2,−6, 2)

30A (2, 0, 12) (0, 2, 4) (0, 0, 30) (2,−4, 4) (0, 2, 4) (4, 2,−2)
30B (2, 0, 4) (0, 6, 0) (0, 0, 10) (2, 0, 4) (4, 0,−2) (0, 6, 0)
30C (2, 0, 12) (0, 2, 6) (0, 0, 30) (2,−4, 0) (0, 2, 6) (4, 2, 0)
30D (2, 0, 12) (0, 2, 8) (0, 0, 30) (2,−2, 4) (−2, 4, 4) (4, 2, 2)
30E (2, 0, 10) (0, 2, 4) (0, 0, 30) (2,−4, 2) (0, 2, 4) (4, 4,−2)
30F∗ (2, 0, 10) (0, 2, 6) (0, 0, 30) (2,−4, 0) (−2, 4, 2) (4, 2,−4)
30G∗ (2, 0, 8) (0, 2, 4) (0, 0, 30) (2,−4, 0) (0, 2, 4) (6, 2,−2)

32A (2, 0, 14) (0, 2, 8) (0, 0, 32) (2,−2, 6) (−2, 4, 2) (2, 4,−2)
32B (2, 2, 6) (0, 4, 0) (0, 0, 16) (2, 2, 6) (0, 4, 0) (4, 4,−4)
32C (2, 0, 4) (0, 4, 8) (0, 0, 16) (2, 0, 4) (−2, 4, 4) (4, 4, 0)
32D (2, 2, 4) (0, 8, 0) (0, 0, 8) (2, 2, 4) (2,−6, 4) (4, 4, 0)
32E (2, 0, 10) (0, 2, 4) (0, 0, 32) (2,−4, 2) (0, 2, 4) (4, 4,−4)
32F (2, 0, 6) (0, 4, 8) (0, 0, 16) (−2, 4, 2) (4,−4, 4) (2, 4,−2)
32G (2, 0, 12) (0, 2, 4) (0, 0, 32) (2,−4, 4) (0, 2, 4) (4, 4, 0)
32H (2, 0, 10) (0, 2, 6) (0, 0, 32) (2,−2, 4) (−2, 4, 2) (4, 4, 0)
32I (2, 0, 12) (0, 2, 8) (0, 0, 32) (2,−2, 4) (−2, 4, 4) (4, 2, 0)
32J∗ (4, 0, 4) (0, 4, 4) (0, 0, 8) (4, 0, 4) (0, 4, 4) (4, 4, 0)
32K∗ (2, 0, 6) (0, 4, 4) (0, 0, 16) (4, 4, 0) (0, 4, 4) (2,−4, 2)
32L∗ (2, 4, 4) (0, 8, 0) (0, 0, 8) (0, 4, 4) (2, 4,−4) (2, 4, 4)
32M∗ (2, 0, 14) (0, 2, 4) (0, 0, 32) (4, 2, 0) (0, 2, 4) (2,−6, 2)
32N∗ (2, 0, 4) (0, 4, 4) (0, 0, 16) (2, 0, 4) (0, 4, 4) (4, 4,−4)
32P ∗ (2, 0, 8) (0, 2, 4) (0, 0, 32) (2,−2, 4) (0, 2, 4) (2,−6, 4)
32Q∗ (2, 0, 16) (0, 2, 4) (0, 0, 32) (4, 0, 0) (0, 2, 4) (2,−6, 4)

∗ These finite lattices were statistically found to be outriders.
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Table 3. Lower-left quadrant of the topological neighbourhood matrix of threeN = 20 bipartite
bcc lattices.

Lattice 20.1 Lattice 20.2 Lattice 20.3

l1 = (2, 0, 8), l1 = (2, 0, 10), l1 = (2, 0, 10),
l2 = (0, 2, 4), l2 = (0, 2, 4), l2 = (0, 2, 6),
l3 = (0, 0, 20) l3 = (0, 0, 20) l3 = (0, 0, 20)

A B C D E F G H I J A B C D E F G H I J A B C D E F G H I J

a 1 1 1 1 3 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 3 1 1
b 1 1 1 1 1 3 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 3 1
c 1 1 1 1 1 1 3 3 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 3
d 1 1 1 1 1 1 1 3 3 1 1 1 1 3 1 1 1 1 3 1 3 1 1 1 1 3 1 1 1 1
e 1 1 1 1 1 1 1 1 3 3 1 1 1 1 3 1 1 1 1 3 1 3 1 1 1 1 3 1 1 1
f 3 1 1 1 1 1 1 1 1 3 3 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 3 1 1
g 3 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 3 1
h 1 3 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 1 1 1 1 1 3 1 1 1 1 3
i 1 1 3 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 3 1 1 1 1 3 1 1 1 1
j 1 1 1 3 3 1 1 1 1 1 1 1 1 1 3 1 1 1 1 3 1 3 1 1 1 1 3 1 1 1

of its nearest-neighbour vertices. If the frog has to make a minimum ofh hops to get from
vertexa to vertexb, then these two vertices are topologicallyhth neighbours to one another.
(Of course, each vertex is a zeroth neighbour to itself). Both the columns and rows of the
neighbourhood matrix are labelled alphabetically. Thus matrix elementab equals matrix
elementba, and this element is the positive integerh.

Two finite lattices with neighbourhood matricesU andV are defined to be topologically
identical if and only if there exists a permutation matrixP such thatUP = PV . In
particular, we are interested here in determining whether two geometrically distinct finite
bipartite bcc lattices are topologically identical or distinct. If the initial vertex is at the
origin, then the eight nearest neighbours would have coordinates(±1,±1,±1). The 26
topologically second neighbours to the origin would have coordinates of one of the three
types(2, 0, 0), (2, 2, 0) or (2, 2, 2), and the 56 topologically third neighbours would have
coordinates of the types(3, 1, 1), (3, 3, 1), or (3, 3, 3). None of our finite bcc lattices of
N < 32 has any pair of topologically fourth neighbour vertices. Thus, for any bipartite finite
bcc lattice ofN < 32, every pair of vertices on the same sublattice are topologically second
neighbours. One vertex on one sublattice and one on the other sublattice are topologically
either nearest or third neighbours.

As an example, we consider the four geometrically distinctN = 20 bipartite bcc
lattices. We label the vertices on one sublatticeA,B, . . . , J and those on the other sublattice
a, b, . . . , j . The rows and the columns of the 20× 20 neighbourhood matrices are labelled
in the above order. Since every off-diagonal element in the upper-left quadrant and the
lower-right quadrant of the neighbourhood matrix of each of the four lattices is 2, it is
sufficient to consider only the distinguishable lower-left (or upper-right) quadrants. Three
of the submatrices are displayed in table 3.

A visual inspection of such small submatrices as in table 3 will reveal which pairs are
equivalent and which are distinct. Notice that the middle matrix representing lattice 20.2
consists of ‘quartets’ of vertices. For example, verticesA andF on one sublattice have in
common the same two third-neighbour vertices,a andf , on the other sublattice. Each of
the vertices belongs to one and only one such quartet. The matrix on the right demonstrates
the same quartet structure for lattice 20.3. Obviously these two lattices are equivalent under
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permutation, and so the two lattices they represent are topologically identical. However,
the matrix on the left shows that any two vertices on one sublattice of lattice 20.1 have
one and only one third neighbour in common on the other sublattice. Finite lattice 20.1
is topologically distinct from lattices 20.2 and 20.3. The computed ground-state properties
of the Heisenberg antiferromagnet, i.e. the energy, staggered magnetization, and spin–spin
correlations, each of them having different values on lattice 20.1 from the identical values on
lattices 20.2, 20.3, and 20.4, confirm the topological classification derived by inspecting the
neighbourhood matrices. (Lattice 20.4 is defined by the vectorsl1 = (2, 0, 4), l2 = (0, 4, 0)
and l3 = (0, 0, 10).)

However, for largerN , simple inspection of the neighbourhood matrices is inadequate to
sort the finite bipartite lattices topologically. Thus we define a nine-digitsorting codebased
on the lower-left quadrant of each neighbourhood matrix. For each finite lattice choose
one of the sublattices and one theN/2 vertices on it, sayA. Each vertex on the chosen
sublattice,A included, will have zero to eight nearest neighbours on the other sublattice
that are also nearest neighbours toA. The vi vertices on the chosen sublattice will havei
nearest neighbours in common withA. The topological sorting code is defined as

C (index)= v0, v1, . . . , v8. (3.1)

In table 3 it is easy to see for lattice 20.1 that verticesB and J have seven nearest
neighbours in common withA and the other seven vertices on the same sublattice have
six nearest neighbours in common withA. (Of course,A has eight nearest neighbours in
common withA.) Thus the topological sorting codeC(20.1) = 000 000 721. In lattices 20.2,
20.3 and 20.4 verticesF andA have eight nearest neighbours in common and each of the
other eight vertices on this sublattice have six nearest neighbours in common withA;
hence codeC(20.2) = 000 000 802= C(20.3) = C(20.4). Thus these three lattices are
topologically identical, according to the code. We have confirmed this identity, and several
other identities, via computed values of the energy, staggered-magnetization and spin–
spin correlations of the Heisenberg antiferromagnet. In some cases further confirmation
of topological identity or distinction has been reinforced by the energy, magnetization and
spin–spin correlations of theS = 1

2XY ferromagnet.
We have used another criterion for the topological classification of finite lattices, the

Smith normal form [12]. For any square matrix,A, or finite rank,n, there exists just one
matrix, F , also of rankn, in Smith normal form.

F =
(
D 0
0 0

)
(3.2)

whereD is a diagonal matrix of rankr 6 n. The elements on the diagonal,

d1 = b1 = 1, d2 = b1b2, . . . , dr = b1b2, . . . , br . (3.3)

The neighbourhood matrices of interest here are in the field of positive integers sobi is
integral. All equivalent matrices have the same Smith normal form, but the Smith matrix
is unique to that one set of equivalent matrices.

The definition of thebi is complicated and so is omitted here. However, the definition
of bi , the process of calculating a Smith normal form matrix and the proof of the above
properties of the Smith normal form can be found in several texts on matrices, e.g. Turnbull
and Aitken [13]. Hand calculation of the Smith normal form of a matrix of only integer
elements and a rank as low as eight would be extremely tedious. However, programs to
compute the Smith normal form for much larger matrices are readily available. We have
used the Maple program.
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As an example, here are the diagonal elements of the Smith normal forms for the
lower-left quadrant of the neighbourhood matrices of the fourN = 20 bipartite bcc lattices:

F(20.1) = 1, 2, 2, 2, 2, 2, 2, 2, 14, 0

and

F(20.2) = F(20.3) = F(20.4) = 1, 2, 2, 2, 14, 0, 0, 0, 0, 0.

It turns out that neither of the two methods,by themselves, are completely successful in
finding all of the topologically identical sets of lattices. However, combining the two
methods appears to find all of these sets. This was confirmed by examining the computed
properties of theS = 1

2 Heisenberg antiferromagnet on bipartite bcc lattices ofN 6 30.
Thus we were able to greatly reduce the computer time to diagonalize this model onN = 32
lattices by using only one lattice of each topology as indicated by our sorting codes and
Smith normal forms.

4. Computation of the ground sate properties of theS = 1/2 Heisenberg
antiferromagnet on finite bcc lattices and statistical estimates of the zero temperature
properties of this model on the infinite bcc lattice

The Hamiltonian of the spin one-half Heisenberg antiferromagnet in zero field is

H = −J
∑
〈i,j〉

Si · Sj (4.1)

where the sum is over nearest-neighbour pairs of vertices. It was proved by Lieb and Mattis
[14] that the ground state of this model on a bipartite three-dimensional lattice has total
spin equal to zero and is nondegenerate. Later is was proved by Kennedyet al [15] and
Kubo and Kishi [16] that this model has long-range Néel order in the ground state.

All our finite lattices and thus the corresponding Hamiltonians are translationally
invariant as well as invariant under inversion, which simplifies the diagonalization of the
Hamiltonians.

The diagonalization of the Hamiltonian matrix to obtain the ground-state eigenvalue (the
energy) and the ground-state eigenvector has been done mostly by workstations and a Power
Challenge computer at the University of Magdeburg with some input from Dalhousie’s SP2
computer. The Lanczos technique used in the diagonalization is standard [17]. In order
to diagonalize the Hamiltonian on the larger lattices we had to reduce the dimensions of
the Hilbert space by using the translation and point group symmetries of the Hamiltonian.
The largest Hamiltonian we diagonalized, on anN = 32 lattice, is of rank 4.7 million,
approximately. Due to the limited precision of the computer, the precision of the ground-
state eigenvalue (or energy) of the Hamiltonian on the larger lattices is seven or eight
digits.

Using the ground-state eigenvector we have computed the ground-state spin–spin
correlations,〈Si ·Sj 〉, for all pairs of spins on all geometrically distinct bipartite bcc lattices
of N vertices where 166 N 6 30, and forN = 32 we have computed the energies and
correlations of alltopologically distinct bipartite lattices only.

The principal results are displayed in table 4 for all topologically distinct bipartite bcc
lattices of 166 N 6 32. For each lattice only the average correlations are displayed for
topologically first-, second- and third-neighbour correlations. We have omitted fourth-
neighbour correlations from table 4 because only some bcc lattices ofN > 32 have
fourth-neighbour pairs of vertices. The average of first-neighbour correlations is simply
the ground-state energy per vertex divided by 4J .
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Table 4. The data below include the staggered magnetization per vertex,m+, and first, second
and third topological neighbour spin–spin correlations,01, 02 and03, and the statistical weight,
w1, of 01 (or the ground-state energy), of theS = 1

2 Heisenberg antiferromagnet on all
topologically distinct finite bcc lattices of 166 N 6 32.

Nα m+ 01 w1 02 03

16A 0.559 0170 −0.312 500 0.996 0.250 000 —

18A 0.549 6565 −0.309 415 0.999 0.246 137 −0.243 779

20A 0.541 8660 −0.306 983 0.998 0.242 910 −0.240 163
20B 0.541 9474 −0.306 949 0.991 0.243 008 −0.240 741

22A 0.535 3653 −0.304 979 0.994 0.240 278 −0.237 650

24A 0.529 5492 −0.303 416 0.998 0.237 729 −0.234 435
24B 0.529 8510 −0.303 301 0.986 0.238 082 −0.235 625
24C 0.529 3639 −0.303 490 0.981 0.237 520 −0.237 700
24D 0.529 9500 −0.303 263 0.971 0.238 197 −0.236 017
24E 0.529 9674 −0.303 259 0.969 0.238 217 −0.236 080
24F 0.528 5647 −0.303 799 0.706 0.236 597 −0.230 544

26A 0.525 1659 −0.301 860 0.964 0.236 282 −0.234 103
26B 0.524 2474 −0.302 191 0.931 0.235 239 −0.231 066

28A 0.520 7211 −0.300 755 0.993 0.234 316 −0.231 678
28B 0.520 0785 −0.300 975 0.952 0.233 596 −0.229 824
28C 0.521 1685 −0.300 593 0.910 0.234 819 −0.232 982
28D 0.521 2568 −0.300 577 0.879 0.234 179 −0.233 244
28E 0.519 3081 −0.301 240 0.688 0.232 733 −0.227 603
28F 0.518 9486 −0.301 366 0.508 0.232 332 −0.226 563

30A 0.516 8641 −0.299 770 0.999 0.232 659 −0.229 789
30B 0.516 9294 −0.299 758 0.998 0.232 731 −0.230 024
30C 0.516 9302 −0.299 758 0.997 0.232 732 −0.230 028
30D 0.516 3136 −0.299 952 0.954 0.232 050 −0.228 439
30E 0.517 3857 −0.299 593 0.925 0.233 237 −0.231 225
30F 0.517 7871 −0.299 441 0.779 0.233 683 −0.232 289
30G 0.514 6583 −0.300 501 0.281 0.230 221 −0.224 155

32A 0.513 6234 −0.298 855 1.000 0.231 396 −0.228 763
32B 0.513 4834 −0.298 917 0.999 0.231 243 −0.228 414
32C 0.513 4433 −0.298 928 0.999 0.232 340 −0.228 320
32D 0.513 4277 −0.298 930 0.995 0.232 325 −0.228 286
32E 0.513 7568 −0.298 812 0.982 0.231 542 −0.229 141
32F 0.513 8191 −0.298 780 0.969 0.231 611 −0.229 962
32G 0.514 1207 −0.298 684 0.920 0.231 941 −0.229 957
32H 0.514 1236 −0.298 684 0.908 0.231 945 −0.229 962
32I 0.512 8576 −0.299 116 0.908 0.231 739 −0.226 930
32J 0.514 3656 −0.298 600 0.829 0.232 778 −0.226 091
32K 0.514 5824 −0.298 521 0.786 0.231 709 −0.229 962
32L 0.512 5163 −0.299 255 0.737 0.230 104 −0.219 460
32M 0.511 6581 −0.299 480 0.478 0.229 246 −0.224 108
32N 0.511 5721 −0.299 515 0.426 0.230 421 −0.223 898
32P 0.510 2774 −0.299 915 0.002 0.229 101 −0.210 851
32Q 0.509 6882 −0.300 104 0.000 0.233 290 −0.230 544



Diagonalized Heisenberg model on bcc lattices 7695

A prime example of the importance of topology rather than geometry is found inN = 32
bipartite bcc lattice 32J . Each vertex has eight first neighbours, 14 topologically second
neighbours, eight topologically third neighbours and one topologically fourth neighbour. For
all 14 second neighbour pairs,〈S0 · Si〉 = 0.233 290, althoughgeometricallyonly six of
these 14 neighbours are second neighbours, six are third neighbours and two neighbours are
fifth neighbours to the vertex chosen as origin. All topologically third-neighbour pairs are
geometrically fourth-neighbour pairs and all have the same spin–spin correlation. Similarly
all first-neighbour pairs have the same correlation, as in table 4. As a geometric entity
this lattice has rotationally complete cubic or octahedral symmetry,Oh. However, as a
topological entity lattice 32J has a still greater symmetry demonstrated by the second
neighbour correlations.

To obtain estimates of a physical property of theS = 1
2 Heisenberg antiferromagnet

on the infinite bcc lattice at zero temperature we first fit a formula in inverse powers ofL

(L3 = N) to the ground-state data for that property on each of the topologically distinct
finite bcc lattices ofN 6 32 vertices. For instance, spin-wave theory [1] and other studies
[18–20] show that the dimensionless ground-state energy per vertex,ε0 = E0/NJ , fits the
formula

ε0(L) = ε0(∞)+ A4L
−4+ A6L

−6+ · · · . (4.2)

Becauseε0 is simply four times the average of the nearest-neighbour correlations, we use
the same formula to fit the topologically second- and third-neighbour correlations.

The dimensionless staggered magnetization operator,

M+ ≡
N/2∑
i=1

Si −
N/2∑
j=1

Sj (4.3)

where theSi are on one sublattice and theSj on the other. In the absence of an external
field 〈M+〉 = 0, but

〈(M+)2〉/N =
N∑
k=1

|〈Si · Sj 〉| (4.4)

is nonzero. The staggered magnetization per vertex,m+, is calculated using

m+ = [〈(M+)2〉]1/2/N. (4.5)

Spin-wave theory [1] shows only that

m+(L) = m+(∞)+ B2L
−2+ · · · . (4.6)

After some testing of various powers ofL in a statistical analysis of the data, we have
settled on using as a third termB4L

−4; we have also tested a two-parameter fit.
Our fitting was done using the statistical programming package S-PLUS (produced by

MathSoft Inc., Seattle, USA). We have also obtained valuable advice from Wade Blanchard,
an expert statistical analyst in Dalhousie’s Department of Mathematics and Statistics. First
we perform for each property a standard least-squares fit of the data from all the topologically
distinct lattices to the appropriate formula. Then each data point is assigned a weight,
sin(u)/u, determined by the Huber weight function [21]. The weights range from 1 for a
point directly on the best fitted curve to 0 for a distant outrider. Weights for the energies
are shown in table 4.

Blanchard advised us that cut-off weights are usually about 0.80, although this cut-off
depends on the data being used. We have varied the energy cut-off weights,wc, from as
high as 0.95, which would classify 19 of the 42 distinct lattices as outriders, to as low as
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Table 5. Estimates (with confidence limits) of theT = 0 properties of theS = 1
2 Heisenberg

antiferromagnet on the infinite bcc lattice.

Method −ε0 −A4 A6 m+ B2 B4 02 −03

finite 1.1518(9) 5.24(10) 8.2(6) 0.4409(11) 0.70(1) 0.30(7) 0.2161(6) 0.214(3)
lattice
spin 1.1512(1) 4.5 — 0.4412(3) 0.72 — — —
wave [1]
series [1] 1.1510(5) — — 0.442(4) — — — —
variation 1.160 — — 0.426 — — — —

0.75, which would classify only nine of the lattices as outriders. The estimates of both
the energy and staggered magnetization peak as a function ofwc when wc = 0.85 or,
alternatively, where the number of outriders,N0, is 12. Although the energy and staggered
magnetization weights are similar, we decided to use the energy weights to define outriders
because the energy is simply the ground-state eigenvalue of the Hamiltonian matrix, where
the staggered magnetization is calculated from the ground-state eigenvector. Thus for each
N we were able to rank those bcc lattices that were not outriders with bcc latticeNA being
‘best’, latticeNB second best, etc, as seen in table 2. The confidence limits that we have
inserted in table 5 after the estimates of most properties are determined as the difference
between the estimates forN0 = 12 and the estimates forN0 = 11 andN0 = 13.

Table 5 displays our finite-lattice method estimates at zero temperature of the physical
properties of the spin one-half Heisenberg antiferromagnet on the infinite bcc lattice together
with estimates by three other methods. According to the variational estimate of the energy
per vertex,ε0, the other three estimates are too high by at least 1%, although they agree with
one another to within 0.05%. The finite-lattice estimate of the staggered magnetization per
vertex,m+, agrees with the third-order spin-wave and series-expansion estimates to within
0.25%. Some readers may notice that the spin-wave estimates ofA4 andB2 displayed in
this table are different from those in [1]. The reason is that the authors in that article define
L asL3 = N/2.

The statistical analysis of the second- and third-neighbour correlations on the infinite
lattice have been made not only directly but also by analysis of the ratios of, and differences
between, the first-, second- and third-neighbour correlations. The resulting variation among
the estimates of02 and03 led to our confidence limits. To the best of our knowledge, no
other estimates of these correlations have been published.

Following the example of Oitmaaet al [1] we can use our estimates in table 5 to calculate
other properties. The spin-wave velocityv = −A4/β where, using our definition ofL and
the geometric quantity of Hasenfratz and Leutwyler [20],β = 2.110 4607 so our estimate
is v = 2.48(15). Another geometric property of the bcc lattice [19] isγ = 0.179 205 77.
Then our estimate of the spin stiffness,ρs = m+(∞)vγ /B2 = 0.280(11). Finally, the
perpendicular susceptibilityχ⊥ = ρs/v2 = 0.046(2). The most direct estimate among the
above three, for us and for Oitmaaet al [1], is that of the spin-wave velocity,v. The third-
order spin-wave estimate 2.2 is as good as we might expect in view of the large confidence
limits in each case.
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5. Summary, conclusions and outlook

Following the example of earlier definitions, first of finite simple cubic lattices [8] and
second of fcc lattices [9], we have in this paper defined finite bipartite bcc lattices. In each
step improvements have been made, first in introducing finite lattices in three dimensions,
next on introducing the defining vectors in the upper triangular lattice form and now
in classifying bipartite finite latticestopologically, an important step beyond geometric
classification. Indeed to establish our topological classification we have introduced an
entity, thetopological neighbourhood matrix.

Geometrically distinct but topologically identical finite lattices have neighbourhood
matrices that look superficially distinct but are mathematically identical. Because for finite
lattices with a small number of vertices the neighbourhood matrices are very simple, we
have been able to derive from them a simple topological code to sort out finite bipartite
bcc lattices, a type of sorting code that would work equally well on simple cubic or other
lattices.

We have also used the old but largely unfamiliar Smith normal form of the
neighbourhood matrix as an alternate way to sort finite lattices topologically. The Smith
matrix is much more complicated to derive from the neighbourhood matrix than is our sorting
code, but it would work for quite large lattices well beyond the scope of our simpler method.
When both methods answered that two lattices were topologically distinct, the ground-state
properties of the Heisenberg Hamiltonian on these two lattices invariably confirmed this
fact.

We have diagonalized the spin one-half Heisenberg antiferromagnet Hamiltonian on
all geometrically distinct bipartite bcc lattices of sixteen to twenty vertices. Using both
our methods of recognizing topologically identical bipartite lattices, we have diagonalized
the Hamiltonian on only sixteen topologically distinct thirty-two vertex bipartite bcc
lattices, thus saving many hours of computing time. The high-performance computer
used standard procedures to compute to very high precision the ground-state eigenvalue
(energy) and eigenvector on each lattice. Thence all spin–spin correlations and the staggered
magnetization were derived, and other properties such as four-spin correlations could have
been derived.

These data for each physical property were fitted statistically to appropriate equations
using inverse powers ofL, the cube root of the number of vertices. Unlike some methods,
our finite-lattice method enables the determination (statistically) of the confidence limits of
the estimates of each property calculated.

We were pleased to find that our estimate of the energy per vertex of the Heisenberg
antiferromagnet on the infinite bcc lattice at zero temperature agrees with the third-order
spin-wave and series-expansion estimates of Oitmaaet al [1] to within five parts in ten
thousand. Our estimate of the staggered magnetization agrees with the spin-wave estimate
[1] to within 0.25% and within the 1% confidence limits of the series estimate. Variational
estimates of energy and staggered magnetization [11] differ from those of the other three
methods by a larger amount. We have not found calculations by other methods of the second-
and third-neighbour spin–spin correlations that we have calculated, but our estimates are
useful because the correlations give insight into the nature of the ground-state eigenvector.

We would like to see by other theoretical methods, such as the quantum Monte
Carlo method, estimates of the properties we have calculated. Also we failed to find in
the literature experimental measurements of energy and staggered magnetization at near
zero temperature on magnetic materials that can be well represented by the spin one-half
Heisenberg antiferromagnet on the bcc lattice.
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A nearly ideal three-dimensional isotropic Heisenberg antiferromagnet is the magnetic
system of RbMnF3 [22], but the magnetic moments have 5/2 spins. Experimental examples
of a spin one-half isotropic Heisenberg antiferromagnet on a bcc lattice have been hard to
find, but very recently Srdanovet al [23] have found evidence for a spin one-half Heisenberg
bcc antiferromagnet consisting ofF centres in sodium-electro-sodalite.

Perhaps the greatest advance described in this paper is the recognition of the importance
of topology in the theoretical study of quantum spin systems at zero temperature. We have
learned a lot in the past two or three years, but there is much more to learn and do in
this corner of physics—studying other lattices, different properties, higher spin, nonzero
temperature, etc. More powerful computers would help us, and they will become available.
Better still, we invite theoretical and experimental colleagues to join us in our exploration.
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