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Abstract. This paper is the third in a sequence of papers developing and applying the finite-
lattice method for estimation of the zero-temperature properties of quantum spin models on
infinite cubic lattices. Here we generate finite bipartite body-centred cubic (bcc) lattices of
16 < N < 32 vertices. Our geometrically distinct finite lattices are defined by vectors in
upper triangular lattice form. We have found that sets of two to six geometrically distinct finite
bcc lattices are topologically identical, and that we thus need only one lattice of each set for
our method of estimation. We have studied the spin one-half Heisenberg antiferromagnet by
diagonalizing its Hamiltonian on each of the finite lattices and hence computing its ground-state
properties. By extrapolation of these data we obtain estimates of'the O properties on

the infinite bcc lattice. Our estimate of tife = 0 energy agrees to five parts in 10 thousand
with third-order spin-wave and series-expansion method estimates, while our estimate of the
staggered magnetization agrees with the spin-wave estimate to within 0.25%.

1. Introduction

The physics of quantum spin systems on lattices has been much studied and remains of great
interest. It is a major part of condensed matter physics. In particular at zero temperature
guestions such as what the energy per vertex is, whether long-range order exists, if so what
is its nature, the possibility of quantum phase transitions, the spatial dependence of spin—spin
correlations, etc are being studied. Several different methods of calculating the properties
of quantum spin systems such as the Heisenberg antiferromagnétYtifierromagnet and

the r—J model are being developed and used. The usefulness of a method of calculation of
properties depends greatly on the dimensibnof the lattice and the temperaturg,

At T =0 and ford = 2 or 3 series expansions starting from the Ising model limit and
spin-wave methods have proved to be particularly useful [1]. The quantum Monte Carlo
method would be very useful too, but we are unaware of its application to quantum spin
models on cubic lattices.

In 1964 Bonner and Fisher [2] introduced what we could now call the method of exact
diagonalization on finite lattices in one dimension. Two decades ago Oitmaa and Betts
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introduced the finite-lattice method in two dimensions [3, 4]. It became popular after high
T, superconductivity was discovered. For further information recent review articles are
recommended [5, 6]. However, it seems that until recently (except for one short exploratory
paper [7]) no one extended the method of exact diagonalization on finite lattices to three
dimensions.

In 1997 Betts and Stewart published their paper on the estimation of zero-temperature
properties of quantum spin systems on the simple cubic lattice via exact diagonalization on
finite simple cubic lattices [8]. This method was soon extended to finite face centred cubic
(fce) lattices for the estimation of thE = O properties of the spin one-halfY ferromagnet
on the infinite fcc lattice using finite fcc lattices of < 25 vertices [9]. The finite-lattice
method estimates of the energy and magnetization per vertex of this model agreed to within
a fraction of a percent with the estimates by spin-wave, series-expansion and variational
methods.

We learned from Lynesst al [10] about using a triple of vectors in upper triangular
lattice form (utlf) to define finite lattices in three dimensions. Generating finite lattices in
this way ensures that each lattice is geometrically distinct. Some of us used the utlf method
first to define finite lattices [9]. Since then we have learned that some lattices that are
geometrically distinct are topologically identical. Hence, as far as we have investigated,
each physical property of each quantum spin model with nearest neighbour interactions
has the same numerical value on all topologically identical though geometrically distinct
lattices.

In section 3 we describe how to classify finite-lattices topologically. First we define
a topological neighbourhood matrix and calculate one for each finite bcc lattice. Any
two geometrically distinct finite lattices whose neighbourhood matrices are equivalent are
topologically identical lattices. We find such equivalence in two separate ways. Our
topological sorting code is very easy to calculate but is useful only for bipartite finite
lattices of N < 32. The little known Smith normal form matrix can work for large as well
as small lattices but is more complicated to calculate.

Section 4 describes the computation of the ground-state eigenvalue and eigenvector of
the spin one-half Heisenberg Hamiltonian on the finite bcc lattices. Ground-state spin—
spin correlations are computed for each lattice using its eigenvector. Thence the staggered
magnetization is calculated. Statistical analyses fit formulae, determined by spin-wave
theory [1], in N~%/3 to the data in turn for energy, magnetization and correlations and thus
provide finite-lattice method estimates for tife= 0 properties on the infinite bcc lattice.
Since our method includes the precise calculation of the ground-state of the eigenvector, it
has the advantage of the ready calculation of any property of the quantum spin model based
on its ground-state eigenvector.

Finally we compare our finite results with the recent series expansion, third-order spin-
wave [1] and variational [11] estimates. Our estimate of the energy per vertex agrees with
the spin-wave and series-expansion estimates very closely. Our estimate of the staggered
magnetization agrees to within 0.25% with the estimates from both of the above-mentioned
methods. The variational estimate of energy is 1% below the other three estimates, and the
variational estimate of staggered magnetization is 3% below the other estimates.

2. Generation of bipartite finite bcc lattices

The unbounded bcc lattice can be defined by any three of the primitive vegterq1, 1, 1),
a;=(1,1,-1), a3 = (1,—-1,1) andas = (—1,1,1). The unbounded bcc lattice can be
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filled by identical parallelepipeds each defined by three edge vectors,

3
la =) nepag (2.1)
p=1

wheren,g are integers.

A finite bcc lattice can be derived from any one of the parallelepipeds described above
by being subjected to periodic boundary conditions. That is, each of the three pairs of
opposite faces are identified.

A finite bcc lattice is bipartite if each of the nine coefficienigg, is an even integer.

The resulting bipartite finite bcc lattice consists of two identical finite simple cubic lattices.
Any of several different parallelepipeds can generate the same finite lattice. Another way
of regarding a finite lattice is to consider an unbounded lattice, bcc, fcc or whatever, as
being composed oWV identical sublattices. Then on each of tNesublattices all vertices

are considered to be one vertex.

In figure 1 we provide an example of a bipartite finite bcc lattice. The parallelepiped
which by replication fills the unbounded bcc lattice is defined by edge vectors

L;=(0,-24) Ly;=(2,4,0 Lz =(-2,4,2). (2.2)

The volume of this parallelepiped is 72, which means that it cont&lias 18 vertices. The
vertices on one simple cubic sublattice are represented by black circles and those on the
other sublattice by white squares. Of course, each of the eight corner vertices is shared
by eight parallelepipeds, and each of the two face-centred ‘white vertices,, 1, 3) and

(1,5, 3), is shared between two parallelepipeds.

An N = 18 bipartite finite bcc lattice is formed by the application of periodic boundary
conditions in all three directions, that is, by identifying each pair of opposite faces of
the parallelepiped. The resulting nine distinct vertices on one sublattice are labelled
A, B,C,...I and the nine vertices on the other sublattice are labellédc,...i. We
have drawn bonds only between veri@4, 2) and its eight nearest neighbours. (Drawing
all the bonds would make figure 1 appear too cluttered.) Note that two of these bonds each
have two pieces within the parallelepiped, but because of periodic boundary conditions each
of these bonds is continuous in the finite lattice.

Since publishing the first paper on exact diagonalization on finite cubic lattices [8] we
learned about describing the generating of finite lattices by parallelepipeds in utif.<An
matrix, B, is in upper triangular lattice form [10] if and only if the integral matrix elements,
b;;, satisfy the following criteria:

bij>1 i=1,2,...,n
bije[O,bij) 1<l<]<n

For utlf parallelepipeds on the bcc lattice the first edge vedioris in the positive octant
of the lattice space but not in the-plane; the second edge vectdy, lies in the positive
quadrant of theyz-plane but not along the-axis; the third edge vectolg, lies on the
positive z-axis. These three edge vectors form a 3 utlf matrix, B. By using only
generating, or defining, vectors in utlf form each finite lattice is described only once, so we
have no need to search for duplicates. Further discussion on utlf matrices is contained in
Stewartet al [9] and Lynesset al [10].

Here we describe our best criteria for the initial selection of finite bipartite bcc lattices.
First, each vertex must have eight distinct nearest neighbours for a model such as the usual
Heisenberg antiferromagnet. Thus all finite bipartite bcc lattices must have at least 16
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Figure 1. A sample 18 vertex, bcc lattice-filling parallelepiped is defined in this figure by the
eight corner vertices and the broken lines between them representing the edges. Application of
periodic boundary conditions to this parallelepiped forms the bipastite 18 bcc lattice. The

nine vertices on one sublattice, labelled by capital letters, are represented by full circles, and the
vertices on the other sublattice, labelled by lower case letters, are represented by white squares.
The full lines connect verteX to its eight nearest neighbours.

vertices. At the other limit one need not generate bcc lattices of more vertices than the
computer can deal with in a reasonable length of time; in our presentXase33. A
useful lattice of N < 31 should have no pair of vertices farther apart than geometrically
seventh neighbours or equivalently topologically third neighbours (as described below). For
31 < N < 41 lattices topologically fourth neighbours should be included. Such criteria
for the bcc and other lattices topologically fourth neighbours should be included. Such
criteria for the bcc and other lattices can be applied in a simple computer program. With
the computing facilities available to us, we could complete the exact diagonalization of
the antiferromagnetics = % Heisenberg Hamiltonian on finite bcc lattices of more than
32 vertices, but it would have taken much more time. However, we are pleased to have
computed the ground-state eigenvector of 16 topologically distinct bec lattices of 32 vertices.
Table 1 gives, for 16 N < 32, the number of finite bcc lattices that are geometrically
distinct, the number of the geometrically distinct lattices that are bipartite, the number of
those that are also topologically distinct and finally, the number of those remaining which
are also statistically useful in our method.
All topologically distinct bipartite bcc lattices of 18 N < 32 vertices are described
in table 2 below. Each lattice is described by a lael. The ‘best’ lattice for eactv
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Table 1. Numbers of finite bcce lattices of eveYi vertices in which each lattice has eight distinct
nearest-neighbour vertices. The number headingsrmgre:geometrically distinct latticesy,—
bipartite latticesyi—topologically distinct bipartite lattices;,—statistically useful lattices.

N ng np Nt ny
16 12 5 1 1
18 15 1 1 1
20 22 4 2 2
22 16 1 1 1
24 52 15 6 5
26 21 2 2 2
28 44 9 6 4
30 52 7 7 5
32 57 20 16 10
Totals 291 64 42 31

is labelled A, the second besB, etc. The statistical analysis of the energy data for the
Heisenberg antiferromagnet described in section 4 determines the order of goodness of the
finite lattices. The finite lattices are defined by a set of three vedoris, upper triangular

lattice form. One can consider the three vectors as defining the edge of a parallelepiped,
and then that the three pairs of opposite faces are identified, thus defining the finite lattice.
The same finite lattice can then be defined by a different ‘compact’ parallelepiped whose
compact edge vectord;, are as short as possible:

3
Lj = ijll,- (24)
i=1

with each coefficienty;;, being an integer, positive, negative, or zero. The converse linear
relation also requires integral coefficients.

3. Topologically distinct finite lattices

After publication of the first article on using finite three-dimensional (simple cubic) lattices

to estimate the zero-temperature properties of quantum spin systems [8] we became puzzled
over the computed properties of some of the finite lattices. An examination of table 1 in
that publication shows that three apparently geometrically disfinet 16 bipartite simple

cubic lattices have the same computed ground-state energy and the same long-range order
for the Heisenberg antiferromagnet and for tki& ferromagnet. This phenomenon also
occurs for a pair ofv = 18 bipartite simple cubic lattices and a triple 8f= 20 bipartite

simple cubic lattices.

In our second paper [9], developing the finite-lattice method on the fcc lattice fof ¥he
ferromagnet, no such phenomenon was found. However, there are no bipartite fcc lattices.
When we turned to the Heisenberg antiferromagnet on the bcc lattice the same phenomenon
was manifest. We wondered whether such geometrically distinct finite lattices, simple cubic
or bcc, could be topologically identical.

Our first step in determining whether two geometrically distinct finite latticesvof
vertices are also topologically distinct is to construdibpological neighbourhood matrix
for each finite lattice. We label the verticesb, c, ... on one sublattice and, B, C, ...
on the other. Suppose an imaginary microscopic frog can hop from one vertex to only one
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Table 2. Defining vectors of topologically distinct bipartite bcc lattices of46V < 32 vertices.

utlf vectors Compact vectors

Na 12 123 I3 L1 L, L3

16A (4,0,0) 0,4,00 (0,0,49 (4,0,0) 0,4,0) (0,0,4)
18A (2,0,8) 0,24 (0,0,18 (2,-2,49 (0,24 (4,0,-2)

204 (2,0,100 (0,2,6) (0,0,200 (2,-2,4 (—2,4,2 (400
208 (2,0,8) 0,24 (0,020 ((2,-2,4 (0,24 (4,0, -4

22A (2,0,8) 0,24 (0,022 ((2,-2,4 (0,24 4,2,-2)

24A (2,0,8) 0,24 (0,029 (2-24 (0,249 (4,4,0)
24B (2,0,4) 0, 4,49 (0,012 (2,0,4 0, 4,4 (4,4,0)
24C (2,0,100 (0,2,6) (0,0,249 (2,-2,4 (2,42 (42 -2
24D (2,0,4) 0,4,6) (0,0,12 (2,0,4 (-2,4,2) (2,4, -2
24E (2,0,12 (0,2,4 (0,0,29 (2,449 (0,24 (4,0,0)
24F* (2,0,120 (0,2,6) (0,0,24) (4,0,0 2,-4,00 (2,2,-6)

26A (2,0,100 (0,2,4 (0,0,260 (2,-4,2) (0,24 (4,2, -2)
26B (2,0,8) 0,24 (00,26 (2,-2,49 (0,24 (4,4, -2)

284 (2,0,12 (0,2,8 (0,0,28 (2,-2,49 (=244 (2,40
28B (2,0,12 (0,2,4 (0,0,28 (2.-4,4 (0,24 (4,2,0
28C (2,0,100 (0,2,4 (0,0,28 (2,-4,2 (0,24 (4,4,0)
28D (2,0,100 (0,2,6) (0,0,28 (2,-2,4 (2,42 (4,2 -2
28E* (2,0,8) 0,249 (0,0,28 (-2,40 (0,24 (4,4, -4)
28F* (2,0,149 (0,2,4 (0,0,28 (4,0,0 ©0,2,4) (2,-6,2)

304 (2,0,12 (0,2,4 (0,0,300 (2,-4,49 (0,24 4,2, -2)
308 (2,0,4) 0,6,00 (0,0,10 (2,0,% (4,0,-2) (0,6,0
30C (2,0,12 (0,2,6) (0,0,300 (2,—-4,00 (0,2,6) (4,2,0
30D (2,0,12 (0,2,8 (0,0,300 (2,-2,49 (244 422
30E (2,0,100 (0,2,49 (0,0,30 (2.-4,2 (0,24 4,4, -2)
30F* (2,0,100 (0,2,6) (0,0,30 (2,-4,00 (-2,42 42 -9
30G*  (2,0,8) 0,2,4 (0,0,300 (2,—-4,00 (0,24 (6,2, -2)

324 (2,0,149 (0,2,8 (0,0,32 (2,-2,6) (—2,4,2 (2,4, -2
32B (2,2,6) (0,400 (0,0,16 (2,2,6) (0,4,0) (4,4, -4)
32C (2,0,4) (0,4,8 (0,0,16) (2,0,4) (-2,4,4) (4,40
32D (2,2,4) (0,800 (0,0,8 2,2,9 (2,-6,4) (4,40
32E (2,0,100 (0,2,49 (0,0,32 (2.-4,2 (0,24 (4,4, -4)
32F (2,0,6) 0,4,8 (0,0,16) (-2,42 (4, 44 (24,-2
32G (2,0,12 (0,2,49 (0,0,32 (2,-4,49 (0,24 (4,4,0)
32H (2,0,100 (0,2,6) (0,0,32) (2,-2,4) (-2,42 (440
321 (2,0,12 (0,2,8 (0,0,32 (2,-2,49 (2,44 (4,20
32J* (4,0,4) 0,4,49 (0,0,8) (4,0,4) 0,4,4) (4,4,0)
32K*  (2,0,6) 0,4,4 (0,0,16) (4,4,0 0,4, 4) (2,-4,2)
32L* (2,4,4 (0,800 (0,0,8) ©,4,4) 2,4-4 (249
32M*  (2,0,14 (0,2,4 (0,0,32 (4,20 0,2,4 (2,-6,2)
32N*  (2,0,4) 0,4,49 (0,0,16 (2,0,4 0,4,4) (4,4, -4)
32p* (2,0,8) 0,249 (00,32 (2,-2,49 (0,24 (2,-6,4)
320* (2,0,16) (0,2,4) (0,0,32 (4,0,0) 0,2,4) (2,-6,4)

* These finite lattices were statistically found to be outriders.
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Table 3. Lower-left quadrant of the topological neighbourhood matrix of thvee: 20 bipartite

bcc lattices.
Lattice 20.1 Lattice 20.2 Lattice 20.3
I1=(20,8), 11 = (2,0,10), 11 = (2,0,10),
b =(0,2,4), b = (0,2, 4), > = (0,2, 6),

I3 = (0, 0, 20) I3 = (0,0, 20) I3 = (0, 0, 20)
ABCDEVFGHIJ ABCDETFGHIJ ABCDETFGHIJ
all1 1331111 3111131111 1131111311
b1 111133111 1311113111 1113111131
c1111113311 1131111311 1111311113
d11111113 31 1113111131 3111131111
e 11111111 33 1111311113 1311113111
f3111111113 3111131111 1131111311
g33 11111111 1311113111 1113111131
h1331111111 1131111311 1111311113
i 1133111111 1113111131 3111131111
j1 113311111 1111311113 1311113111

of its nearest-neighbour vertices. If the frog has to make a minimumhafps to get from
vertexa to vertexb, then these two vertices are topologicallyh neighbours to one another.

(Of course, each vertex is a zeroth neighbour to itself). Both the columns and rows of the
neighbourhood matrix are labelled alphabetically. Thus matrix elemkreéquals matrix
elementba, and this element is the positive integer

Two finite lattices with neighbourhood matricEsandV are defined to be topologically
identical if and only if there exists a permutation mati#x such thatUP = PV. In
particular, we are interested here in determining whether two geometrically distinct finite
bipartite bcc lattices are topologically identical or distinct. If the initial vertex is at the
origin, then the eight nearest neighbours would have coordinatés+1, +1). The 26
topologically second neighbours to the origin would have coordinates of one of the three
types(2,0,0), (2,2,0) or (2,2, 2), and the 56 topologically third neighbours would have
coordinates of the type&3, 1, 1), (3,3,1), or (3,3, 3). None of our finite bcc lattices of
N < 32 has any pair of topologically fourth neighbour vertices. Thus, for any bipartite finite
bcc lattice of N < 32, every pair of vertices on the same sublattice are topologically second
neighbours. One vertex on one sublattice and one on the other sublattice are topologically
either nearest or third neighbours.

As an example, we consider the four geometrically distiNct= 20 bipartite bcc
lattices. We label the vertices on one sublatidceB, . . ., J and those on the other sublattice
a,b,...,j. The rows and the columns of the 220 neighbourhood matrices are labelled
in the above order. Since every off-diagonal element in the upper-left quadrant and the
lower-right quadrant of the neighbourhood matrix of each of the four lattices is 2, it is
sufficient to consider only the distinguishable lower-left (or upper-right) quadrants. Three
of the submatrices are displayed in table 3.

A visual inspection of such small submatrices as in table 3 will reveal which pairs are
equivalent and which are distinct. Notice that the middle matrix representing lattice 20.2
consists of ‘quartets’ of vertices. For example, vertideand F on one sublattice have in
common the same two third-neighbour verticesand f, on the other sublattice. Each of
the vertices belongs to one and only one such quartet. The matrix on the right demonstrates
the same quartet structure for lattice 20.3. Obviously these two lattices are equivalent under
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permutation, and so the two lattices they represent are topologically identical. However,
the matrix on the left shows that any two vertices on one sublattice of lattice 20.1 have
one and only one third neighbour in common on the other sublattice. Finite lattice 20.1
is topologically distinct from lattices 20.2 and 20.3. The computed ground-state properties
of the Heisenberg antiferromagnet, i.e. the energy, staggered magnetization, and spin—spin
correlations, each of them having different values on lattice 20.1 from the identical values on
lattices 20.2, 20.3, and 20.4, confirm the topological classification derived by inspecting the
neighbourhood matrices. (Lattice 20.4 is defined by the veéfoes(2, 0, 4), I, = (0, 4, 0)
andlz = (0,0, 10).)

However, for largetV, simple inspection of the neighbourhood matrices is inadequate to
sort the finite bipartite lattices topologically. Thus we define a nine-dimiting codebased
on the lower-left quadrant of each neighbourhood matrix. For each finite lattice choose
one of the sublattices and one th&/2 vertices on it, sayd. Each vertex on the chosen
sublattice,A included, will have zero to eight nearest neighbours on the other sublattice
that are also nearest neighboursAo The v; vertices on the chosen sublattice will have
nearest neighbours in common with The topological sorting code is defined as

C (index)= vg, vy, ..., vg. (3.2)

In table 3 it is easy to see for lattice 20.1 that vertiggend J have seven nearest
neighbours in common witkd and the other seven vertices on the same sublattice have
six nearest neighbours in common with (Of course,A has eight nearest neighbours in
common withA.) Thus the topological sorting cod&20.1) = 000000 721. In lattices 20.2,

20.3 and 20.4 verticeg and A have eight nearest neighbours in common and each of the
other eight vertices on this sublattice have six nearest neighbours in commorAwith
hence codeC(20.2) = 000000802= C(20.3) = C(20.4). Thus these three lattices are
topologically identical, according to the code. We have confirmed this identity, and several
other identities, via computed values of the energy, staggered-magnetization and spin—
spin correlations of the Heisenberg antiferromagnet. In some cases further confirmation
of topological identity or distinction has been reinforced by the energy, magnetization and
spin—spin correlations of thg = %XY ferromagnet.

We have used another criterion for the topological classification of finite lattices, the
Smith normal form [12]. For any square matri, or finite rank,n, there exists just one
matrix, F, also of rankn, in Smith normal form.

D 0
(29 62
where D is a diagonal matrix of rank < n. The elements on the diagonal,
di=b1=1, dy=biby, ..., d. =biby, ..., b,. (3.3)

The neighbourhood matrices of interest here are in the field of positive integersiso
integral. All equivalent matrices have the same Smith normal form, but the Smith matrix
is unigue to that one set of equivalent matrices.

The definition of theb; is complicated and so is omitted here. However, the definition
of b;, the process of calculating a Smith normal form matrix and the proof of the above
properties of the Smith normal form can be found in several texts on matrices, e.g. Turnbull
and Aitken [13]. Hand calculation of the Smith normal form of a matrix of only integer
elements and a rank as low as eight would be extremely tedious. However, programs to
compute the Smith normal form for much larger matrices are readily available. We have
used the Maple program.
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As an example, here are the diagonal elements of the Smith normal forms for the
lower-left quadrant of the neighbourhood matrices of the fgue 20 bipartite bcc lattices:

F(201)=1,2,2,2,2,2,2,2,14,0
and
F(20.2) = F(20.3) = F(204)=1,2,2,2,14,0,0,0,0, 0.

It turns out that neither of the two methodsy themselvesare completely successful in
finding all of the topologically identical sets of lattices. However, combining the two
methods appears to find all of these sets. This was confirmed by examining the computed
properties of theS = % Heisenberg antiferromagnet on bipartite bcc latticesvo& 30.

Thus we were able to greatly reduce the computer time to diagonalize this motet082

lattices by using only one lattice of each topology as indicated by our sorting codes and

Smith normal forms.

4. Computation of the ground sate properties of theS = 1/2 Heisenberg
antiferromagnet on finite bcc lattices and statistical estimates of the zero temperature
properties of this model on the infinite bcc lattice

The Hamiltonian of the spin one-half Heisenberg antiferromagnet in zero field is
H=-J])8;-5 (4.1)

(i.J)
where the sum is over nearest-neighbour pairs of vertices. It was proved by Lieb and Mattis
[14] that the ground state of this model on a bipartite three-dimensional lattice has total
spin equal to zero and is nondegenerate. Later is was proved by Keehedly15] and
Kubo and Kishi [16] that this model has long-rangéell order in the ground state.

All our finite lattices and thus the corresponding Hamiltonians are translationally
invariant as well as invariant under inversion, which simplifies the diagonalization of the
Hamiltonians.

The diagonalization of the Hamiltonian matrix to obtain the ground-state eigenvalue (the
energy) and the ground-state eigenvector has been done mostly by workstations and a Power
Challenge computer at the University of Magdeburg with some input from Dalhousie’s SP2
computer. The Lanczos technique used in the diagonalization is standard [17]. In order
to diagonalize the Hamiltonian on the larger lattices we had to reduce the dimensions of
the Hilbert space by using the translation and point group symmetries of the Hamiltonian.
The largest Hamiltonian we diagonalized, on An= 32 lattice, is of rank 4.7 million,
approximately. Due to the limited precision of the computer, the precision of the ground-
state eigenvalue (or energy) of the Hamiltonian on the larger lattices is seven or eight
digits.

Using the ground-state eigenvector we have computed the ground-state spin—spin
correlations(S; - S;), for all pairs of spins on all geometrically distinct bipartite bcc lattices
of N vertices where 1&£ N < 30, and forN = 32 we have computed the energies and
correlations of altopologically distinct bipartite lattices only.

The principal results are displayed in table 4 for all topologically distinct bipartite bcc
lattices of 16< N < 32. For each lattice only the average correlations are displayed for
topologically first-, second- and third-neighbour correlations. We have omitted fourth-
neighbour correlations from table 4 because only some bcc lattice8 ¢f 32 have
fourth-neighbour pairs of vertices. The average of first-neighbour correlations is simply
the ground-state energy per vertex divided by 4
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Table 4. The data below include the staggered magnetization per vestexand first, second
and third topological neighbour spin—spin correlationsg, ', andI'3, and the statistical weight,
w1, of 'y (or the ground-state energy), of the = % Heisenberg antiferromagnet on all

topologically distinct finite bcc lattices of 16 N < 32.

Na mt Iy w1 I, I's

16A 05590170 -0.312500 0996 0250000 —
184 05496565 —0.309415 0999 0246137 —0.243779

20A 05418660 —0.306983 0998 0242910 —0.240163
20B 05419474 —-0.306949 (991 0243008 —0.240741

22A 05353653 -0.304979 (994 0240278 —0.237650

24A 05295492 -0.303416 0998 0237729 —0.234435
24B 05298510 -0.303301 0986 0238082 —0.235625
24C 05293639 —-0.303490 0981 0237520 —0.237700
24D 05299500 -0.303263 (971 Q0238197 —-0.236017
24E 05299674 —-0.303259 (969 0238217 —0.236080
24F 05285647 —0.303799 0706 Q0236597 —0.230544

26A 05251659 —-0.301860 (964 0236282 —0.234103
268 05242474 -0.302191 0931 0235239 -0.231066

284 05207211 -0.300755 0993 0234316 —0.231678
28B  0.5200785 —0.300975 0952 Q0233596 —0.229824
28C 05211685 —-0.300593 (0910 0234819 -0.232982
28D 05212568 —0.300577 0879 Q0234179 —0.233244
28E 05193081 -0.301240 0688 0232733 —0.227603
28F 05189486 —0.301366 0508 0232332 —0.226563

304 05168641 -—0.299770 0999 Q0232659 —0.229789
30B 05169294 —-0.299758 (0998 0232731 -0.230024
30C 05169302 -—-0.299758 (0997 Q0232732 —-0.230028
300 05163136 —-0.299952 (0954 0232050 —0.228439
30E 05173857 —0.299593 0925 Q233237 -—-0.231225
30F 05177871 —-0.299441 0779 Q0233683 —0.232289
30G 05146583 —-0.300501 0281 Q230221 —-0.224155

324 05136234 -0.298855 1000 Q231396 —0.228763
32B 05134834 —-0.298917 (0999 0231243 -0.228414
32C 05134433 -0.298928 (0999 0232340 -0.228320
32D 05134277 —-0.298930 0995 0232325 —0.228286
32E 05137568 —0.298812 (0982 0231542 -0.229141
32F 05138191 -—-0.298780 0969 0231611 —-0.229962
32G 05141207 -0.298684 (1920 Q0231941 —-0.229957
32H 05141236 —-0.298684 (0908 0231945 —0.229962
32/ 0.5128576 —-0.299116 (0908 0231739 —-0.226930
327 05143656 —0.298600 0829 0232778 —0.226091
32K 05145824 -—-0.298521 0786 0231709 —0.229962
32L 05125163 -0.299255 0737 0230104 —0.219460
32M 05116581 —0.299480 0478 0229246 —-0.224108
32N 05115721 -0.299515 0426 0230421 —0.223898
32Pp 05102774 —-0.299915 0002 0229101 -0.210851
320 05096882 —-0.300104 0000 0233290 —0.230544
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A prime example of the importance of topology rather than geometry is founNd=n32
bipartite bcc lattice 32. Each vertex has eight first neighbours, 14 topologically second
neighbours, eight topologically third neighbours and one topologically fourth neighbour. For
all 14 second neighbour pairgSy - S;) = 0.233 290, althouglgeometricallyonly six of
these 14 neighbours are second neighbours, six are third neighbours and two neighbours are
fifth neighbours to the vertex chosen as origin. All topologically third-neighbour pairs are
geometrically fourth-neighbour pairs and all have the same spin—spin correlation. Similarly
all first-neighbour pairs have the same correlation, as in table 4. As a geometric entity
this lattice has rotationally complete cubic or octahedral symmetyy, However, as a
topological entity lattice 32 has a stillgreater symmetry demonstrated by the second
neighbour correlations.

To obtain estimates of a physical property of the= % Heisenberg antiferromagnet
on the infinite bcc lattice at zero temperature we first fit a formula in inverse powedts of
(L® = N) to the ground-state data for that property on each of the topologically distinct
finite bec lattices ofNV < 32 vertices. For instance, spin-wave theory [1] and other studies
[18-20] show that the dimensionless ground-state energy per vegtex,Eo/N J, fits the
formula

go(L) = g0(00) + AsL ™+ AgL™® + - - .. (4.2)

Becausesg is simply four times the average of the nearest-neighbour correlations, we use
the same formula to fit the topologically second- and third-neighbour correlations.
The dimensionless staggered magnetization operator,

N/2 N/2

i= j=

where theS; are on one sublattice and ti# on the other. In the absence of an external
field (M*) = 0, but

N
(M*M)?)/N =) [(S; - S))l (4.4)
k=1
is nonzero. The staggered magnetization per verey, is calculated using
m* = [(MHA]Y2/N. (4.5)
Spin-wave theory [1] shows only that
m*(L) =m*(c0) + BoL ™2+ ---. (4.6)

After some testing of various powers @f in a statistical analysis of the data, we have
settled on using as a third terByL—*; we have also tested a two-parameter fit.

Our fitting was done using the statistical programming package S-PLUS (produced by
MathSoft Inc., Seattle, USA). We have also obtained valuable advice from Wade Blanchard,
an expert statistical analyst in Dalhousie’s Department of Mathematics and Statistics. First
we perform for each property a standard least-squares fit of the data from all the topologically
distinct lattices to the appropriate formula. Then each data point is assigned a weight,
sin(u)/u, determined by the Huber weight function [21]. The weights range from 1 for a
point directly on the best fitted curve to O for a distant outrider. Weights for the energies
are shown in table 4.

Blanchard advised us that cut-off weights are usually about 0.80, although this cut-off
depends on the data being used. We have varied the energy cut-off weighfsom as
high as 0.95, which would classify 19 of the 42 distinct lattices as outriders, to as low as
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Table 5. Estimates (with confidence limits) of tHe = O properties of thes = 3 Heisenberg
antiferromagnet on the infinite bcc lattice.

Method —&0 —Aqg Ag m* B> By Iy —I'3

finite 1.1518(9) 5.24(10) 8.2(6) 0.4409(11) 0.70(1) 0.30(7) 0.2161(6) 0.214(3)
lattice

spin 1.1512(1) 4.5 — 0.4412(3) 0.72 — — —

wave [1]

series [1] 1.1510(5) — — 0.442(4) — — — —
variation 1.160 — — 0.426 — — — —

0.75, which would classify only nine of the lattices as outriders. The estimates of both
the energy and staggered magnetization peak as a functian, efhen w. = 0.85 or,
alternatively, where the number of outriderd, is 12. Although the energy and staggered
magnetization weights are similar, we decided to use the energy weights to define outriders
because the energy is simply the ground-state eigenvalue of the Hamiltonian matrix, where
the staggered magnetization is calculated from the ground-state eigenvector. Thus for each
N we were able to rank those bcc lattices that were not outriders with bcc Ihi#ideeing

‘best’, lattice NB second best, etc, as seen in table 2. The confidence limits that we have
inserted in table 5 after the estimates of most properties are determined as the difference
between the estimates fofy = 12 and the estimates fa¥g = 11 andNg = 13.

Table 5 displays our finite-lattice method estimates at zero temperature of the physical
properties of the spin one-half Heisenberg antiferromagnet on the infinite bcc lattice together
with estimates by three other methods. According to the variational estimate of the energy
per vertexgo, the other three estimates are too high by at least 1%, although they agree with
one another to within 0.05%. The finite-lattice estimate of the staggered magnetization per
vertex,m™, agrees with the third-order spin-wave and series-expansion estimates to within
0.25%. Some readers may notice that the spin-wave estimatés afd B, displayed in
this table are different from those in [1]. The reason is that the authors in that article define
L asL®=N/2.

The statistical analysis of the second- and third-neighbour correlations on the infinite
lattice have been made not only directly but also by analysis of the ratios of, and differences
between, the first-, second- and third-neighbour correlations. The resulting variation among
the estimates of', andI's led to our confidence limits. To the best of our knowledge, no
other estimates of these correlations have been published.

Following the example of Oitmaet al [1] we can use our estimates in table 5 to calculate
other properties. The spin-wave velocity= —A4/8 where, using our definition of and
the geometric quantity of Hasenfratz and Leutwyler [20]= 2.1104607 so our estimate
is v = 2.48(15). Another geometric property of the bcc lattice [19]yis= 0.17920577.

Then our estimate of the spin stiffness, = m™(co)vy /B, = 0.280(11). Finally, the
perpendicular susceptibility, = p,/v? = 0.046(2). The most direct estimate among the
above three, for us and for Oitmaaal [1], is that of the spin-wave velocity,. The third-

order spin-wave estimate 2.2 is as good as we might expect in view of the large confidence
limits in each case.
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5. Summary, conclusions and outlook

Following the example of earlier definitions, first of finite simple cubic lattices [8] and
second of fcc lattices [9], we have in this paper defined finite bipartite bcc lattices. In each
step improvements have been made, first in introducing finite lattices in three dimensions,
next on introducing the defining vectors in the upper triangular lattice form and now
in classifying bipartite finite latticesopologically, an important step beyond geometric
classification. Indeed to establish our topological classification we have introduced an
entity, thetopological neighbourhood matrix

Geometrically distinct but topologically identical finite lattices have neighbourhood
matrices that look superficially distinct but are mathematically identical. Because for finite
lattices with a small number of vertices the neighbourhood matrices are very simple, we
have been able to derive from them a simple topological code to sort out finite bipartite
bcc lattices, a type of sorting code that would work equally well on simple cubic or other
lattices.

We have also used the old but largely unfamiliar Smith normal form of the
neighbourhood matrix as an alternate way to sort finite lattices topologically. The Smith
matrix is much more complicated to derive from the neighbourhood matrix than is our sorting
code, but it would work for quite large lattices well beyond the scope of our simpler method.
When both methods answered that two lattices were topologically distinct, the ground-state
properties of the Heisenberg Hamiltonian on these two lattices invariably confirmed this
fact.

We have diagonalized the spin one-half Heisenberg antiferromagnet Hamiltonian on
all geometrically distinct bipartite bcc lattices of sixteen to twenty vertices. Using both
our methods of recognizing topologically identical bipartite lattices, we have diagonalized
the Hamiltonian on only sixteen topologically distinct thirty-two vertex bipartite bcc
lattices, thus saving many hours of computing time. The high-performance computer
used standard procedures to compute to very high precision the ground-state eigenvalue
(energy) and eigenvector on each lattice. Thence all spin—spin correlations and the staggered
magnetization were derived, and other properties such as four-spin correlations could have
been derived.

These data for each physical property were fitted statistically to appropriate equations
using inverse powers df, the cube root of the number of vertices. Unlike some methods,
our finite-lattice method enables the determination (statistically) of the confidence limits of
the estimates of each property calculated.

We were pleased to find that our estimate of the energy per vertex of the Heisenberg
antiferromagnet on the infinite bcc lattice at zero temperature agrees with the third-order
spin-wave and series-expansion estimates of Oitetaa [1] to within five parts in ten
thousand. Our estimate of the staggered magnetization agrees with the spin-wave estimate
[1] to within 0.25% and within the 1% confidence limits of the series estimate. Variational
estimates of energy and staggered magnetization [11] differ from those of the other three
methods by a larger amount. We have not found calculations by other methods of the second-
and third-neighbour spin—spin correlations that we have calculated, but our estimates are
useful because the correlations give insight into the nature of the ground-state eigenvector.

We would like to see by other theoretical methods, such as the quantum Monte
Carlo method, estimates of the properties we have calculated. Also we failed to find in
the literature experimental measurements of energy and staggered magnetization at near
zero temperature on magnetic materials that can be well represented by the spin one-half
Heisenberg antiferromagnet on the bcc lattice.
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A nearly ideal three-dimensional isotropic Heisenberg antiferromagnet is the magnetic
system of RbMnE[22], but the magnetic moments havg25spins. Experimental examples
of a spin one-half isotropic Heisenberg antiferromagnet on a bcc lattice have been hard to
find, but very recently Srdancet al [23] have found evidence for a spin one-half Heisenberg
bcc antiferromagnet consisting &f centres in sodium-electro-sodalite.

Perhaps the greatest advance described in this paper is the recognition of the importance
of topology in the theoretical study of quantum spin systems at zero temperature. We have
learned a lot in the past two or three years, but there is much more to learn and do in
this corner of physics—studying other lattices, different properties, higher spin, nonzero
temperature, etc. More powerful computers would help us, and they will become available.
Better still, we invite theoretical and experimental colleagues to join us in our exploration.
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